سنتز نانوذرات تیتانیوم با استفاده از عصاره گیاه مرزه به روش فراصوت؛ اثرات ضد میکروبی بر ضد پاتوژن‌های غذازاد و سمیت سلولی بر سلول‌های نرمال و سرطانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه تخصصی فناوری‌های نوین آمل، آمل، ایران

2 استادیار، گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی، تهران، ایران

3 استادیار، گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه تخصصی فناوری‌های نوین آمل، آمل، ایران

چکیده

سنتز سبز نانوذرات مزایایی دارد که می‌توان به اجتناب از مواد شیمیایی خطرناک، پروسه تمیز، غیر سمی، دوستدار محیط زیست، آماده‌سازی آسان، به صرفه بودن و کنترل بر اندازه و شکل ذرات اشاره کرد. در این مطالعه ابتدا عصاره آبی گیاه مرزه ریشنگری تهیه شد و نانوذرات تیتانیوم به روش سبز و فراصوت تولید شد. سپس به منظور شناسایی نانوذرات از آنالیز UV، طیف سنجی تفکیک انرژی EDS و آنالیز میکروسکوپ الکترونی روبشی و انتقالی استفاده گردید. سپس MIC و MBC نانوذرات بر ضد پاتوژن‌های اشرشیاکلی O157:H7 و لیستریا منوسیتوژنز و سمیت سلولی نانوذرات در رقت‌های 5/12، 25، 50 ، 100 و 200 میلی‌گرم بر میلی‌لیتر بر روی رده سلولی سرطانی کولون (HT-29)  و سلول‌های نرمال (HEK-293) ارزیابی شد. محلول حاوی نانوذرات با جذب در ناحیه 352 نانومتر نشان‌دهنده سنتز نانوذرات تیتانیوم توسط عصاره آبی گیاه مرزه بود. در محلول کلوئیدی نانوذرات، اشکال نانوذرات کروی مشاهده شد که از نظر اندازه از 4/37 تا 6/49 نانومتر بودند. نانوذرات در غلظت 20 میکروگرم در میلی‌لیتر موجب مهار رشد لیستریا منوسیتوژنز و اشرشیاکلی شد. نانوذرات تیتانیوم سنتز شده در این مطالعه اثرات سمی بر سلول‌های نرمال نداشت، در حالی که در غلظت 183 میکروگرم در میلی‌لیتر مانع رشد حدود 50 درصد سلول‌های سرطانی شد. نتایج این مطالعه، نگرانی‌ها بابت خطرات استفاده از نانوذرات تیتانیوم را کم کرده و زمینه را برای استفاده بیشتر این ماده در بسته‌بندی مواد غذایی به منظور افزایش مدت ماندگاری فراهم می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Extraction of titanium nanoparticles of Saturaja rechengri Jamzad us-ing ultrasound techniques; the antimicrobial effect against food-borne pathogens and its cytotoxicity against normal and cancer cell lines

نویسندگان [English]

  • Razieh Partovi 1
  • Fataneh Narchin 2
  • Atefeh Araghi 3
1 Associate Professor, Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Mod-ern Technologies, Amol, Iran
2 Associate Professor, Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Associate Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
چکیده [English]

Green synthesis of nanoparticles has some advantages including the commitments  to avoid  harmful chemicals, clean process, eco-friendly, easy preparation, economical and control on size and shape of particles. In this study, water extract of Saturaja rechengri Jamzad was prepared and titanium nanoparticles  produced using green and ultrasound techniques. Then, in order to characterize the nanoparticles, UV analysis, energy dispersive x-ray spectroscopy and TEM and SEM analysis were performed. MIC and MBC of nanoparticles against E. coli O157:H7 and L. monocytogenes and cytotoxicity in 12.5, 25, 50, 100 and 200 mg/ml on HT-29 and HEK-293 cell lines were also determined. Nanoparticles had absorption at 352 nm which showed synthesis of titanium nanoparticles using Saturaja rechengri Jamzad extract. Spherical shape of nanoparticles was detected in colloidal solution with 37.4 to 49.6 nm. Titanium nanoparticles could stop the growth of E. coli O157:H7 and L. monocytogenes at 20 µg/ml. The nanoparticles did not revealany cytotoxic effect on the  normal cells, while it was  stop the growth of 50% of cancer cells at 183 µg/ml. The results of this study decreased the anxiety of using titanium nanoparticles and increased the potential  of using this nanoparticle in food packaging  to finally extend shelf life of food.

کلیدواژه‌ها [English]

  • Cytotoxicity
  • Green synthesis
  • Antimicrobial effect
  • Titanium nanoparticles
  • Saturaja rechengri Jamzad
1- Silveira SMD, Júnior AC, Scheuermann GN, Secchi FL, Vieira CRW. Chemical composition and antimicrobial activity of essential oils from selected herbs cultivated in the South of Brazil against food spoilage and foodborne pathogens. Cienc Rural. 2012; 42: 1300-1306.
2- Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer E, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015; 12(4): 326-328.
3- Griffin J, Singh AK, Senapati D, Lee E, Gaylor K, Jones-Boone J, et al. Sequence-specific HCV RNA quantification using the size-dependent nonlinear optical properties of gold nanoparticles. Small. 2009; 5(7): 839-845.
4- Han Y, Li S, Cao X, Yuan L, Wang Y, Yin Y, et al. Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci. Rep. 2014; 4: 7134.
5- Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005; 88(2): 412-419.
8- Zia R, Riaz M, Farooq N, Qamar A, Anjum S. Antibacterial activity of Ag and Cu nanoparticles synthesized by chemical reduction method: a comparative analysis. Mater. Res. Express. 2018; 5: 075012.
9- Harne S, Sharma A, Dhaygude M, Joglekar S, Kodam K, Hudlikar M. Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf. 2012; 95: 284-288.
10- Giannousi K, Avramidis I, Samara CD. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv. 2013; 43: 21743–21752.
11- Mahavinod Angrasan JKV, Subbaiya R. Biosynthesis of copper nanoparticles by Vitis vinifera leaf aqueous extract and its antibacterial activity. Int. J. Curr. Microbiol. App. Sci. 2014; 3: 768-774.
12- Celikel N, Kavas G. Antimicrobial properties of some essential oils against some pathogenic microorganisms. Czech J. Food Sci. 2008; 26: 174–181.
13- Salvadori MR, Ando RA, Nascimento CAO, Corea B. Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. J. Env. Sci. Health. 2014; 49: 1286–1295.
14- Narchin F, Larijani K, Rustaiyan A, Ebrahimi SN, Tafvizi F. Phytochemical synthesis of silver nanoparticles by two techniques using Saturaja rechengri Jamzad extract: identifying and comparing in vitro anti-proliferative activities. Adv. Pharm. Bull. 2018; 8(2): 235-244.
15- Shiripoure R, Ketab G, Tafvizi F, Khodarahmi P. Biosynthesis and chemical characterization of silver nanoparticles using Satureja rechingeri Jamzad and their apoptotic effects on AGS gastric cancer cells. J. Clust. Sci. 2020; 32: 1389-1399.
16- Alizadeh, A. Essential oil composition, phenolic content, antioxidant, and antimicrobial activity of cultivated Satureja rechingeri Jamzad at different phenological stage. Z. Naturforsch. 2015; 70(3-4) c: 51–58.
17- Sefidkon F, Abbasi K, Jamzad Z, Ahmadi S. The effect of distillation methods and stage of plant growth on the essential oil content and composition of Satureja rechingeri Jamzad. Food Chem. 2007; 100: 1054–1058.
18- Kavakebi E, Anvar AA, Ahari H, Motalebi AA. Green biosynthesized Satureja rechingeri Jamzad-Ag/poly vinyl alcohol film: quality improvement of Oncorhynchus mykiss fillet during refrigerated storage. Food Sci. Technol. Campinas. 2021; 41(1): 267-278.
19- Waghmode MS, Gunjal AB, Mulla JA, Patil NN, Nawani NN. Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation. SN. Appl. Sci. 2019; 1: 310.
20- Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical applications of TiO2 nanostructures: Recent advances. Int. J. Nanomedicine. 2020; 15: 3447–3470.
21- Al-Shabib NA, Husain FM, Qais FA, Ahmad N, Khan A, Alyousef AA, et al. Phyto-mediated synthesis of porous titanium dioxide nanoparticles from Withania somnifera root extract: broad-spectrum attenuation of biofilm and cytotoxic properties against HepG2 cell lines. Front. Microbiol. 2020; 11: 1680.
22- Partovi R, Talebi F, Boluki Z, Sharifzadeh A. Evaluation of antimicrobial activity of Cymbopogon citratus essential oil alone and in combination with Origanum majorana and Caryophyllus aromaticus essential oils against some foodborne bacteria. Int J Enteric Pathog. 2019; 7(2): 60-67.
23- Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-M07-A06, 10.ed, Wayne, PA: Clinical and Laboratory Standards Institute; 2015.
24- Celiktas OY, Hames Kocabas EE, Bedir E, Vardar Sukan F, Ozek T, Baser KHC. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem. 2007; 100: 553-559.
25- Violet Mary J, Pragathiswaran C, Anusuya N. Photocatalytic, degradation, sensing of Pb2+ using titanium nanoparticles synthesized via plant extract of Cissusquadrangularis: In vitro analysis of microbial and anti-cancer activities. J. Mol. Struct. 2021; 1236: 130144.
26- Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nat Mater. 2004; 3: 482–488.
27- Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 2001; 1: 515–519.
28- Li Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang Y, et al. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat. Res. 2012; 14(2): 4-10.
29- Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, et al. Nano genotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials. 2009; 30(23): 3891-3914.
30- Shahin Lefteh M, Sourinejad I, Ghasemi Z. Biosynthesis of titanium dioxide nanoparticles from the Mangrove (Avicennia marina) and investigation of its antibacterial activity. J Mazandaran Univ Med Sci. 2020; 30(186): 15-27.
31- Thakur BK, Kumar A, Kumar D. Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. South African J Botany. 2019; 124: 223–227.
32- Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, et al. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac.J. Trop. Med. 2014; 7(12): 968-976.
33- Eisa NE, Almansour S, Alnaim IA, Ali AM, Algrafy E, Ortashi KM, et al. Eco-synthesis and characterization of titanium nanoparticles: Testing its cytotoxicity and antibacterial effects. Green Process Synth. 2020; 9: 462–468.
34- Subhapriya S, Gomathipriya P. Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb. Pathog. 2018; 116: 215–220.
35- Hassanien R, Husein DZ, Al-Hakkani MF. Biosynthesis of copper nanoparticles using aqueous Tilia extract: antimicrobial and anticancer activities. Heliyon. 2018; 4(12): e01077.
36- Jayarambabu N, Akshaykranth A, Venkatappa Rao T, Venkateswara Rao K, Rakesh Kumar R. Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Mater Lett. 2020; 259(15): 126813.
37- Hamed MT, Bakr BA, Shahin YH, Elwakil BH, Abu-Serie MM, Aljohani FS, et al. Novel synthesis of titanium oxide nanoparticles: Biological activity and acute toxicity study. Bioinorg Chem Appl. 2021; 2021: 8171786.
38- Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, et al. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep. 2014; 4(1): 4134
39- Mobeen Amanulla A, Sundara R. Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Mater Today Proc. 2019; 8: 323–331.
40- Narayanana M, Vigneshwarib P, Natarajanb D, Kandasamyc S, Alsehlid M, Elfasakhanyd A, et al. Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential. Environ Res. 2021; 200: 111335
41- Mata R, Nakkala JR, Sadras SR. Biogenic silver nanoparticles from Abution indicum: Their antioxidant, antibacterial and cytotoxic effects in vitro. Colloids Surf B. 2015; 128: 276-86.
42- Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, et al. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnol. 2021; 86: 19.
43- Prakash J, Vignesh K, Anusuya T, Kalaivani T, Ramachandran C, Sudha Rani R, et al. Application of nanoparticles in food preservation and food processing. J Food Hyg Saf. 2019; 34: 317-324.