مروری جامع بر اثرات استفاده از مخمر بر تنظیم تخمیر در شکمبه، بهبود راندمان تولید و سلامت در نشخوارکنندگان

نوع مقاله : مقاله مروری

نویسندگان

1 گروه تحقیق و توسعه مجموعه خوشه صنعتی آرکا و شرکت دانش بنیان توسعه مکمل زیست فناور آریانا، مشهد، ایران

2 دکتری تغذیه دام، دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشجوی دکتری تغذیه دام، دانشگاه کشاورزی و منابع طبیعی ساری، ساری، ایران

4 کارشناسی ارشد ژنتیک و اصلاح نژاد دام، دانشگاه فردوسی مشهد، مشهد، ایران

5 دانشکده دامپزشکی، واحد بابل، دانشگاه آزاد اسلامی، بابل، ایران

چکیده

با توجه به نیاز روزافزون جوامع بشری به تولیدات دامی، مزارع پرورش دام به سمت صنعتی شدن پیش رفته است. لذا با افزایش تولید، استفاده از منابع کربوهیدراتی با قابلیت تخمیر بالا در جیره دام‌ها افزایش یافته است. از طرفی عدم سازگاری دستگاه گوارش نشخوارکنندگان به این نوع سیستم تغذیه‌ای باعث بروز بیماری‌های متابولیکی مختلف و کاهش عمر اقتصادی گله می‌شود. همچنین تحقیقات نشان داده است که افزودن آنتی‌بیوتیک به خوراک گاوها باعث افزایش رشد، کاهش ضریب تبدیل، بهبود عملکرد تولید و تولید مثل می‌شود. اما استفاده طولانی مدت از آنتی‌بیوتیک‌ها باعث افزایش مقاومت آنتی‌بیوتیکی در دام و مصرف‌کنندگان محصولات دامی می‌شود. به همین خاطر یافتن جایگزینی مناسب برای آنتی‌بیوتیک‌ها نظیر پروبیوتیک‌ها امری ضروری به نظر می‌رسد. استفاده از مخمر در تغذیه نشخوارکننندگان سبب استقرار و حفظ تعادل جمعیت باکتری‌های مفید، افزایش هضم فیبر، بهبود عملکرد شکمبه، تنظیم pH شکمبه و کاهش شیوع بیماری‌های متابولیکی می‌شود. همچنین نشان داده شده است که جیره حاوی مخمرها، عملکرد تولید شیر، تداوم شیردهی و کیفیت شیر را بهبود می‌بخشد. پروبیوتیک‌ها می‌توانند با رقابت بر سر مواد غذایی، تولید ترکیبات ضد میکروبی، خنثی نمودن سموم تولید شده توسط این میکروارگانیسم‌ها، میزان ابتلا به عفونت‌های روده‌ای و التهاب را کاهش ‌دهند. همچنین حضور ترکیبات مؤثری مانند بتاگلوکان‌ها و مانان‌ها در دیواره سلولی مخمر مسمومیت با سموم قارچی را به‌ویژه در نشخوارکنندگان کاهش می‌دهد و با تحریک سیستم ایمنی و تولید آنزیم‌های هضمی نقش مهمی را در بهبود رشد و سلامت دام، تولید مثل، و تولید ایفا می‌کنند.

کلیدواژه‌ها


عنوان مقاله [English]

A comprehensive review of the effects of yeast on the regulation of rumen fermentation, productive efficiency and health in ruminants

نویسندگان [English]

  • Ehsan Oskoueian 1
  • Mohammad faseleh Jahromi 1
  • parisa Shokryazdan 1
  • marzieh hajmohammadi 2
  • Mahdi salaripour 3
  • Mohammadreza Ahmadi 4
  • Hila Taghavi 5
  • Mojtaba Moein jahromi 1
1 Research and Development, Arka Industrial Group and Ariana knowledge-based company, Mashhad, Iran
2 PhD, Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 PhD Student in Animal Nutrition, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
4 M.Sc. Genetics and Animal Breeding, Ferdowsi University of Mashhad, Mashhad, Iran
5 Faculty of Veterinary, Babol-Branch, Islamic Azad University, Babol, Iran
چکیده [English]

Due to growing demand of human communities for livestock products, livestock farms have trended towards industrialization.Therefore, with increasing livestock production, the use of highly fermentable carbohydrates has increased in livestock diets. On the other hand, the incompatibility of the gastrointestinal tract of ruminants with this feeding method causes the occurrence of various metabolic diseases and reduces the herd's economic longevity. Research has also shown that adding antibiotics to cow diet increases growth, reduces feed conversion ratio, and improves production and reproduction. But the use of antibiotics for long-term increases antibiotic resistance in livestock and consumers of livestock products. Therefore, it seems necessary to find a suitable alternative to antibiotics such as probiotics. The use of yeast in ruminant nutrition improve to establish and maintain the balance of beneficial bacterial populations, increase fiber digestion, improve ruminal function, ruminal pH and reduce the occurrence of various metabolic diseases. Yeast diets have also to improve milk production performance, persistence in dairy cattle, and milk quality. Probiotics can reduce the risk of intestinal infections and inflammation by competing for food, producing antimicrobial compounds, neutralizing toxins produced by these microorganisms. Also, the presence of effective compounds such as beta-glucans and mannas in the yeast cell wall reduces poisoning by fungal toxins, especially in ruminants, and by stimulating the immune system and the production of digestive enzymes, plays an important role in the growth performance, production, reproduction and the immune system in ruminants.

کلیدواژه‌ها [English]

  • Rumen Fermentation
  • Production Efficiency
  • Rumen microbial Communities
  • Yeast
  • Ruminants
1- Vohra A, Syal P, Madan A. Probiotic Yeasts in Livestock sector. Anim. Feed Sci. Technol. 2016.
2- Kumura H, Tanoue Y, Tsukahara M, Tanaka T, Shimazaki K. Screening of dairy yeast strains for probiotic applications. J. Dairy Sci. 2016; 87 (12): 6-4050.
3- Salamat News. Antibiotic. [Internet]. [Available from: http://www.salamatnews.com/news/ updated 2007 May 2; cited 2022 Nov.
4- Vohra A, Satyanarayana T. Probiotic yeasts. Microorganisms in sustainable agriculture and biotechnology: Springer Sci. Rev. 2012; p. 411-33.
5- Roto SM, Rubinelli PM, Ricke SC. An introduction to the avian gut microbiota and the effects of yeast-based prebiotic-type compounds as potential feed additives. Front. vet. sci. 2015; 2.
6- Koul V, Kumar U, Sareen VK, Singh S. Mode of action of yeast culture (YEA‐SACC 1026) for stimulation of rumen fermentation in buffalo calves. J. Sci. Food Agric. 1998; 77(3): 407-413.
7- Chaucheyras-Durand F, Walker N, Bach A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 2008; 145(1): 5-26.
8- Collado MC, Sanz Y. Quantification of mucosa-adhered microbiota of lambs and calves by the use of culture methods and fluorescent in situ hybridization coupled with flow cytometry techniques. Vet. Microbiol. 2007; 121(3): 299-306.
9- Lesmeister K, Heinrichs A, Gabler M. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J. Dairy Sci. 2004; 87(6): 1832-1839.
10- Magalhães V, Susca F, Lima F, Branco A, Yoon I, Santos J. Effect of feeding yeast culture on performance, health, and immunocompetence of dairy calves. J. Dairy Sci. 2008; 91(4): 149-509.
11- Robinson P. Yeast products for growing and lactating ruminants: A literature summary of impacts on rumen fermentation and performance. Cooperative Extension University Of California, Davis. 2010.
12- Thrune M, Bach A, Ruiz-Moreno M, Stern M, Linn J. Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows: Yeast supplementation on rumen fermentation. Livest. Sci. 2009; 124(1): 261-5.
13- Desnoyers M, Giger-Reverdin S, Bertin G, Duvaux-Ponter C, Sauvant D. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 2009; 92(4): 1620-32.
14- Julien C, Marden J, Moncoulon R, Auclair E, Bayourthe C, Crovetto G, editors. Ruminal redox potential in dairy cows regarding diet composition and live yeast supplementation: a modelling approach. Energy and protein metabolism and nutrition 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition Conference 2010, September 6-10, 2010; Parma, Italy: Wageningen Academic Publishers, 2010; 1-13.
15- Bach A, Iglesias C, Devant M. Daily rumen pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation. Anim. Feed Sci. Technol. 2007; 53(1): 136-146.
16- DeVries T, Chevaux E. Modification of the feeding behavior of dairy cows through live yeast supplementation. J. Dairy Sci. 2014; 97(10): 6499-6510.
17- Chaucheyras-Durand F, Martin C, Chevaux E, Forano E. Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet: In tech, Access Publisher; 2012.
18- ChaucheyrasDurand F, Ameilbonne A, Bichat A, Mosoni P, Ossa F, Forano E. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. J. Appl. Microbiol. 2016; 120(3): 560-570.
19- Mousa KM, El-Malky O, Komonna O, Rashwan S. Effect of live dried yeast supplementation on digestion coefficients, some rumen fermentation, blood constituents and some reproductive and productive parameters in Rahmani sheep. Am. J. Sci. 2012; 8: 291-303.
20- Bitencourt LL, Silva JRM, Oliveira BMLd, Dias Júnior GS, Lopes F, Siécola Júnior S, et al. Diet digestibility and performance of dairy cows supplemented with live yeast. Sci. Agric. 2011; 68(3): 301-7.
21- Leng R, Nolan J. Nitrogen metabolism in the rumen. J. Dairy Sci. 1984; 67(5): 1072-89.
22- Chaucheyras-Durand F, Masséglia S, Fonty G. Effect of the microbial feed additive Saccharomyces cerevisiae CNCM I-1077 on protein and peptide degrading activities of rumen bacteria grown in vitro. Curr. Microbiol. 2005; 50(2): 96-101.
23- Chaucheyras F, Fonty G, Bertin G, Gouet P. In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1997; 3466(9): 61-65.
24- Newbold C, Wallace R, McIntosh F. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr. 1996; 76(02): 249-261.
25- Lynch H, Martin S. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci. 2002; 85(10): 2603-2608.
26- Newbold C, Olvera-Ramirez A, editors. The use of yeast-based probiotics to meet new challenges in ruminant production. J. Anim. Sci. 2006: Amer soc Animal Science 1111North Dunlap Ave, Savoy, IL 61874 USA.
27- Galvão KN, Santos JE, Coscioni A, Villasenor M, Sischo WM, Berge ACB. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reprod. Nutr. Dev. 2005; 45(4): 427-440.
28- Ringot D, Lerzy B, Chaplain K, Bonhoure J-P, Auclair E, Larondelle Y. In vitro biosorption of ochratoxin A on the yeast industry by-products: Comparison of isotherm models. Bioresour. Technol. 2007; 98(9):1812-1821.
29- Tao M, Yan T, ZHANG N-f, GUO J-p, DENG K-d, Yi Z, et al. Effects of dietary yeast β-glucan on nutrient digestibility and serum profiles in pre-ruminant Holstein calves. J. Sci. Food Agric. 2015; 14(4): 749-757.
30- Malekkhahi M, Tahmasbi A, Naserian A, Danesh-Mesgaran M, Kleen J, AlZahal O, et al. Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Anim. Feed Sci. Technol. 2016; 213: 29-43.
31- Poppy G, Rabiee A, Lean I, Sanchez W, Dorton K, Morley P. A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. J. Dairy Sci. 2012; 95(10): 6027-6041.
32- Robinson P, Erasmus LJ. Effects of analyzable diet components on responses of lactating dairy cows to Saccharomyces cerevisiae based yeast products: A systematic review of the literature. Anim. Feed Sci. Technol. 2009; 149(3): 185-198.
33- Tripathi M, Karim S. Effect of yeast cultures supplementation on live weight change, rumen fermentation, ciliate protozoa population, microbial hydrolytic enzymes status and slaughtering performance of growing lamb. Livest. Sci. 2011; 135(1): 17-25.
34- Erasmus L, Coertze R, Leviton M, Chevaux E. A meta-analysis of the effect of monensin or live yeast or a combination thereof on performance of beef cattle. J Anim Sci. 2009; 87: 281.
35- Rabiee A, Lean I, Dorton K, Engstrom M, Sanchez W. Effect of feeding Diamond V Yeast Culture™ on milk production and dry matter intake in lactating dairy cows: A meta-analysis. J Anim Sci. 2008; 86: 589.
36- Terré M, Maynou G, Bach A, Gauthier M. Effect of Saccharomyces cerevisiae CNCM I-1077 supplementation on performance and rumen microbiota of dairy calves. Prof. Anim. Sci. 2015; 31(2): 153-8.
37- De Ondarza M, Sniffen C, Dussert L, Chevaux E, Sullivan J, Walker N. Case study: Multiple-Study analysis of the effect of live yeast on milk yield, milk component content and yield, and feed efficiency. Prof. Anim. Sci. 2010; 26(6): 661-666.
38- Pothoulakis C, Kelly CP, Joshi MA, Gao N, O’Keane CJ, Castagliuolo I, et al. Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. J. Gastro. 1993; 104: 1108.
39- Shankar T, Thangamathi P, Rama R, Sivakumar T. Optimization of invertase production using Saccharomyces cerevisiae MK under varying cultural conditions. Int. J. Biochem. 2013; 1(3): 47-56.
40- Hatoum R, Labrie S, Fliss I. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol. 2012; 3: 421.
41- Bzducha-Wróbel A, Kieliszek M, Błażejak S. Chemical composition of the cell wall of probiotic and brewer’s yeast in response to cultivation medium with glycerol as a carbon source. Eur. Food Res. Technol. 2013; 237(4): 489-499.
42- Yang Y, Iji P, Kocher A, Mikkelsen L, Choct M. Effects of mannanoligosaccharide and fructooligosaccharide on the response of broilers to pathogenic Escherichia coli challenge. Br. Poult. Sci. 2008; 49(5): 550-559.
43- Martins FS, Vieira AT, Elian SD, Arantes RM, Tiago FC, Sousa LP, et al. Inhibition of tissue inflammation and bacterial translocation as one of the protective mechanisms of Saccharomyces boulardii against Salmonella infection in mice. Microbes Infect. 2013; 15(4): 270-279.
44- Martins FS, Rodrigues ACP, Tiago FC, Penna FJ, Rosa CA, Arantes RM, et al. Saccharomyces cerevisiae strain 905 reduces the translocation of Salmonella enterica serotype Typhimurium and stimulates the immune system in gnotobiotic and conventional mice. J. Med. Microbiol. 2007; 56(3): 352-359.