بررسی میزان شیوع ژن‌های tetA و اینتگرون کلاس یک در باکتری‌های اشریشیاکلی مقاوم به تتراسایکلین جداسازی شده از ضایعات بیماری کلی باسیلوز طیور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری حرفه‌ای دامپزشکی، دانشکده دامپزشکی، دانشگاه زابل، زابل، ایران

2 استاد، گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه زابل، زابل، ایران

3 دانشیار، گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه زابل، زابل، ایران

چکیده

از مدت‌ها قبل آنتی‌بیوتیک‌ها اولین خط دفاعی برای جلوگیری از عفونت اشریشیاکلی بودند، اما از آنجا که باکتری‌ها به‌طور فزاینده‌ای در برابر درمان مقاوم شده‌اند، قدرت خود را از دست داده‌اند. تحقیق حاضر با هدف بررسی مقاومت به تتراسایکلین‌ها و شیوع ژن‌های مقاومت tetA و اینتگرون کلاس یک در اشریشیاکلی جدا شده از جوجه‌های گوشتی مبتلا به کلی‌باسیلوز انجام شد. با انجام آزمایش آنتی‌بیوگرام در این مطالعه 96/6 درصد از جدایه‌های اشریشیاکلی مقاوم به یک یا هر دو آنتی‌بیوتیک داکسی سایکلین و تتراسایکلین بودند. نتایج آزمایش نشان داد 98/2 درصد از باکتری‌های اشریشیاکلی مقاوم به تتراسایکلین جداسازی شده از ضایعات بیماری کلی‌باسیلوز حامل tetA می‌باشند. میزان شیوع ژن اینتگرون کلاس یک 98/2 درصد می‌باشد. همچنین 96/5 درصد از جدایه‌های این باکتری حامل هر دو ژن اینتگرون کلاس یک و tetA می‌باشند. با در نظر گرفتن نتایج، شیوع دو ژن tetA و اینتگرون کلاس یک در این تحقیق نسبت به سایر پژوهش‌های انجام گرفته به‌طور قابل ملاحظه‌ای بیشتر است که این تفاوت می‌تواند بیانگر مقاومت آنتی‌بیوتیکی زیاد در مرغداری‌های این منطقه باشد که بر لزوم استفاده محتاطانه از تتراسایکلین‌ها در تولید طیور برای کاهش شیوع اشریشیاکلی مقاوم در برابر این آنتی‌بیوتیک‌ها تأکید می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Survey of prevalence of tet(A) and class 1 Integron genes in tetracycline-resistant Escherichia coli isolated from lesions of colibacillosis

نویسندگان [English]

  • Mahmoud Nakhaei 1
  • Mohammad Jahantigh 2
  • mohsen najimi 3
  • Saeed Salari 3
1 D.V.M., Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
2 Professor, Department of Clinical Sciences, Faculty of Veterinary Sciences, University of Zabol, Zabol, Iran
3 Associate Professor, Department of Pathobiology, Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
چکیده [English]

Antibiotics have long been the first line of defense against Escherichia coli infection, but they have lost their potency as the bacteria become increasingly resistant to treatment. The aim of this study was to evaluate the resistance to tetracyclines and the prevalence of tetA and integron class I resistance genes in E. coli isolated from broilers with colibacillosis. In this study, 96.6 % of Escherichia coli isolates resistant to one or both tetracycline antibiotics were studied. Experimental results showed that 98.2 % of tetracycline-resistant Escherichia coli bacteria isolated from lesions of colibacillosis carry tetA. The prevalence of class I integron gene was 98.2%. Also, 96.5% of the isolates of this bacterium carried both genes. Considering the results, the prevalence of tetA and integron class 1 genes in this study was significantly higher than other studies. This difference could indicate high antibiotic resistance in poultry farms in this region which emphasizes the need for cautious use of tetracyclines in poultry production to reduce the prevalence of E. coli resistant to these antibiotics.

کلیدواژه‌ها [English]

  • Integron class
  • tet (A)
  • Escherichia coli
  • Colibacillosis
  • tetracycline
1- Aarestrup FM. Occurrence, selection and spread of resistance to antimicrobial agents used for growth promotion for food animals in Denmark. APMIS. Supplementum. 2000; 101: 1-48.
2- Miranda JM, Guarddon M, Vázquez BI, Fente CA, Barros-Velázquez J, Cepeda A, Franco CM. Antimicrobial resistance in Enterobacteriaceae strains isolated from organic chicken, conventional chicken and conventional turkey meat: A comparative survey. Food control. 2008; 19(4): 412-6.
3- Hammerum AM, Heuer OE. Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Clinical Infectious Diseases. 2009; 48(7): 916-21.
4- Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: perspective, policy, and potential. Public health reports. 2012; 127(1): 4-22.
5- Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Archives of microbiology. 1996; 165(6): 359-69.
6- Bill RL. Clinical Pharmacology and Therapeutics for Veterinary Technicians-E-Book. Elsevier Health Sciences; 2016.
7- Goren E, De Jong WA, Doornenbal P, Laurense T. Therapeutic efficacy of doxycycline hyclate in experimental Escherichia coli infection in broilers. Veterinary Quarterly. 1988; 10(1): 48-52.
8- Garcia PG, Silva VL, Diniz CG. Occurrence and antimicrobial drug susceptibility patterns of commensal and diarrheagenic Escherichia coli in fecal microbiota from children with and without acute diarrhea. The Journal of Microbiology. 2011; 49(1): 46-52.
9- Speer BS, Shoemaker NB, Salyers AA. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clinical microbiology reviews. 1992; 5(4): 387.
10- Kawano M, Yaguchi K, Osawa R. Genotypic analyses of Escherichia coli isolated from chickens with colibacillosis and apparently healthy chickens in Japan. Microbiology and immunology. 2006; 50(12): 961-6.
11- Cambray G, Guerout AM, Mazel D. Integrons. Annual review of genetics. 2010 1; 44: 141-66.
12- Koo HJ, Woo GJ. Distribution and transferability of tetracycline resistance determinants in Escherichia coli isolated from meat and meat products. International journal of food microbiology. 2011; 145(2-3): 407-13.
13- Gow SP, Waldner CL, Harel J, Boerlin P. Associations between antimicrobial resistance genes in fecal generic Escherichia coli isolates from cow-calf herds in western Canada. Applied and Environmental Microbiology. 2008; 74(12): 3658.
14- Schwaiger K, Hölzel C, Bauer J. Resistance gene patterns of tetracycline resistant Escherichia coli of human and porcine origin. Veterinary microbiology. 2010; 142(3-4): 329-36.
15- Skočková A, Cupáková Š, Karpíšková R, Janštová B. Detection of tetracycline resistance genes in Escherichia coli from raw cow’s milk. Journal of Microbiology, Biotechnology and Food Sciences. 2021; 2021: 777-84.
16- Belaynehe KM, Shin SW, Yoo HS. Interrelationship between tetracycline resistance determinants, phylogenetic group affiliation and carriage of class 1 integrons in commensal Escherichia coli isolates from cattle farms. BMC veterinary research. 2018; 14(1): 1-1.
17- Bissonnette L, Roy PH. Characterization of In0 of Pseudomonas aeruginosa plasmid pVS1, an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria. Journal of bacteriology. 1992; 174(4): 1248.
18- Barlow RS, Gobius KS. Diverse class 2 integrons in bacteria from beef cattle sources. Journal of Antimicrobial Chemotherapy. 2006; 58(6): 1133-8.
19- Rowe-Magnus DA, Mazel D. The role of integrons in antibiotic resistance gene capture. International Journal of Medical Microbiology. 2002; 292(2): 115-25.
20- Koo HJ, Woo GJ. Distribution and transferability of tetracycline resistance determinants in Escherichia coli isolated from meat and meat products. International journal of food microbiology. 2011; 145(2-3): 407-13.
21- Levesque C, Piche L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrobial agents and chemotherapy. 1995; 39(1): 185.
22- Shahbazi P, Jahantigh M, Salari S. Antibiotial resistance pattern and prevalence of some extende-spectrum beta-lactamase genes in Escherichia coli isolated from Turkey. Vet Res Biol Prod. 2018; 15: 647–79.
23- Adesiyun A, Offiah N, Seepersadsingh N, Rodrigo S, Lashley V, Musai L. Antimicrobial resistance of Salmonella spp. and Escherichia coli isolated from table eggs. Food Control. 2007; 18(4): 306-11.
24- Cavicchio L, Dotto G, Giacomelli M, Giovanardi D, Grilli G, Franciosini MP, et al. Class 1 and class 2 integrons in avian pathogenic Escherichia coli from poultry in Italy. Poultry science. 2015; 94(6): 1202-8.
25- Ahmed AM, Shimamoto T, Shimamoto T. Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers. International Journal of Medical Microbiology. 2013; 303(8): 475-83.
26- Kohansal M. Isolation charactirization and molecular evaluation of genetic factors of antibiotic resistance in pathogenic Escherichia coli. Veterinary Research and Biological Products. 2018; 31(3): 10-9.
27- Roe MT, Byrd JA, Smith DP, Pillai SD. Class 1 and class 2 integrons in poultry carcasses from broiler house and poultry processing environments. Journal of food protection. 2003; 66(8): 1426-31.
28- Sandalli C, Özgümüş OB, Sevim A. Characterization of tetracycline resistance genes in tetracycline-resistant Enterobacteriaceae obtained from a coliform collection. World Journal of Microbiology and Biotechnology. 2010; 26(11): 2099-103.
29- Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews. 2001; 65(2): 232.
30- Guerra B, Junker E, Schroeter A, Malorny B, Lehmann S, Helmuth R. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. Journal of Antimicrobial Chemotherapy. 2003; 52(3): 489-92.
31- Maynard C, Bekal S, Sanschagrin F, Levesque RC, Brousseau R, Masson L, et al. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. Journal of clinical microbiology. 2004; 42(12): 5444.
32- Seifi S, Khoshbakht R. Prevalence of tetracycline resistance determinants in broiler isolated Escherichia coli in Iran. British poultry science. 2016; 57(6): 729-33.
33- Mohamed SA, Ardiyati T, Rifa’i M. Detection of class 1 integron-associated gene cassettes and tetracycline resistance genes in Escherichia coli isolated from ready to eat vegetables. Annals of Medicine and Surgery. 2020; 55: 327-31.
34- Escudero JA, Loot C, Nivina A, Mazel D. The integron: adaptation on demand. Microbiology spectrum. 2015; 3(2): 3-2.
35- Mazel D. Integrons: agents of bacterial evolution. Nature Reviews Microbiology. 2006; 4(8): 608-20.
36- Stokes HW, Nesbø CL, Holley M, Bahl MI, Gillings MR, Boucher Y. Class 1 integrons potentially predating the association with Tn 402-like transposition genes are present in a sediment microbial community. Journal of Bacteriology. 2006; 188(16): 5722-30.
37- Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J, Chen D, Bian H, Li Y, Yu G. Resistance integrons: class 1, 2 and 3 integrons. Annals of clinical microbiology and antimicrobials. 2015; 14(1): 1-1.
38- Asadi A, Zahraei Salehi T, Jamshidiyan M. Molecular analysis of antibiotic resistance genes in Escherichia coli from broiler chickens in shahrebabak by Multiplex PCR Technique. Iranian Journal of Animal Science. 2018; 49(2) :203-11.
39- Cavicchio L, Dotto G, Giacomelli M, Giovanardi D, Grilli G, Franciosini MP, et al. Class 1 and class 2 integrons in avian pathogenic Escherichia coli from poultry in Italy. Poultry science. 2015; 94(6): 1202-8.
40- Oosterik LH, Peeters L, Mutuku I, Goddeeris BM, Butaye P. Susceptibility of avian pathogenic Escherichia coli from laying hens in Belgium to antibiotics and disinfectants and integron prevalence. Avian diseases. 2014; 58(2): 271-8.
41- Sunde M, Norström M. The prevalence of, associations between and conjugal transfer of antibiotic resistance genes in Escherichia coli isolated from Norwegian meat and meat products. Journal of Antimicrobial Chemotherapy. 2006; 58(4): 741-7.
42- Boerlin P, Travis R, Gyles CL, Reid-Smith R, Heather Lim NJ, Nicholson V, et al. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Applied and environmental microbiology. 2005; 71(11): 6753-61.
43- Quinn PJ, Markey BK, Carter ME, Donnelly WJ, Leonard FC. Veterinary microbiology and microbial disease. Blackwell science. 2002.
44- Wayne, P.A. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 2011.