راهکارهای مبارزه با سموم قارچی به روش‌های زیستی در صنعت دام و طیور

نوع مقاله : مقاله مروری

نویسندگان

1 دانش‌آموخته دکتری تغذیه دام، گروه تغذیه دام، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه زیست‌شناسی، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

3 بخش تحقیق و توسعه، گروه خوشه صنعتی آرکا، مشهد، ایران

4 گروه کشاورزی، دانشگاه پیام نور، تهران، ایران

چکیده

امروزه سموم قارچی یک مشکل اساسی در صنعت خوراک و ایمنی زنجیره غذایی محسوب می‌شوند، که می‌توانند طیف وسیعی از محصولات کشاورزی و زراعی را آلوده کنند، و در نتیجه بر سلامت و تولیدات دام و طیور، و به تبع آن بر سلامت انسان، اقتصاد کشورها و حتی تجارت بین‌المللی تأثیر منفی بگذارند. از آنجایی که نمی‌توان از آلودگی مایکوتوکسین به‌طور کامل قبل یا بعد از برداشت محصولات زراعی جلوگیری کرد، آگاهی دقیق از نحوه حذف سموم قارچی در طی فرآیندهای تکنولوژیکی و استراتژی‌های پاک‌سازی خوراک بسیار مهم است. امروزه کنترل زیستی سموم قارچی توسط میکروارگانیزم‌ها و سایر فاکتورهای بیولوژیک، در حال تبدیل شدن به یک راهکار قابل اعتماد برای محافظت از محصولات غذایی در برابر آلودگی این سموم است، که باعث افزایش ایمنی و کیفیت محصولات زراعی و خوراک دام، و در نهایت کاهش سموم در محصولات با منشاء حیوانی (شیر، گوشت و تخم‌مرغ) و افزایش امنیت زنجیره غذایی می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

The biological control of fungal toxins in the livestock and poultry indus-try

نویسندگان [English]

  • Marzieh Hajmohammadi 1
  • Ehsan Karimi 2
  • Parisa Shokryazdan 3
  • Ehsan Oskoueian 3
  • Mohammad faseleh Jahromi 3
  • Mojtaba Moein jahromi 3
  • Reza Noora 4
1 PhD, Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mash-had, Iran
2 Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
3 Research and Development Department, Arka Industrial Group and Ariana knowledge-based company, Mashhad, Iran
4 Department of Agriculture, Payame Noor University, Tehran, Iran
چکیده [English]

Today, fungal toxins or mycotoxins are a major problem in the food industry and food chain safety, which can contaminate a wide range of agricultural products, and thus they have negatively affect on health and production of livestock and poultry, and consequently human health, the economies of countries and even international trade. Since mycotoxin contamination cannot be completely prevented before or after harvest, it is important to know exactly how to remove mycotoxins during technological processes and feed clearance strategies. Today, the biological control of mycotoxins by microorganisms and other biological factors is becoming a valid approach to protect food products from contamination by these toxins, which increases the safety and quality of crops and animal feed, and ultimately reduces toxin concentration in animal products (milk, meat and eggs), and increase food chain security.

کلیدواژه‌ها [English]

  • Mycotoxin
  • Biological control
  • Microorganism
  • Enzyme
  • Yeast
  • Herbal bioactive com-pounds/spices
1- Anklam E, Stroka J, Boenke A. Acceptance of analytical methods for implementation of EU legislation with a focus on mycotoxins. Food Control. 2002; 13: 173-83.
2- Gambacorta L, Olsen M, Solfrizzo M. Pig urinary concentration of mycotoxins and metabolites reflects regional differences, mycotoxin intake and feed contaminations. Toxins. 2019; 11: 378.
3- Moretti A, Logrieco AF, Susca, A. Mycotoxins: An underhand food problem. In Mycotoxigenic Fungi; Humana Press: New York, NY, USA. 2017; 3–12.
4- Cimbalo A, Alonso-Garrido M, Font G, Manyes L. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food Chem. Toxicol. 2020; 111-161.
5- Jawaid S, Talpur FN, Nizamani SM, Afridi HI. Contamination profile of aflatoxin M1 residues in milk supply chain of Sindh, Pakistan. Toxicol. 2015; 2: 1418–1422.
6- Mohammadi H. A review of aflatoxin M1, milk, and milk products, Aflatoxins. Biochem. Mol. Biol. 2011; 397–414. [In Persian]
7- Aly SA, Anwer W. Effect of naturally contaminated feed with aflatoxins on performance of laying hens and the carryover of aflatoxin B residues in table eggs. Pakistan J. Nutr. 2009; 8: 181–186.
8- Gruber-Dorninger C, Jenkins T, Schatzmayr G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins. 2019; 11: 375.
9- Deshpande SS. (Ed.) Toxic metals, radionuclides, and food packaging contaminants. In Hand Book of Food Toxicology; Marcel Dekker, Inc. New York, NY, USA. 2002; 783–810.
10- Liang J, Xu Y, Sui D, Zhang L, Huang Y, Ma Y, Li F, Chen Y. Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magneticecontrolled switches. J. Phys. Chem. C. 2010; 114: 17465-17471.
11- De Cal A, Larena I, Linan M, et al. Population dynamics of Epicoccum nigrum, abiocontrol agent against brown rot in stone fruit. J. Appl. Microbiol. 2009; 106: 592-605.
12- Wilson CL, Wisniewski M. Biological control of postharvest diseases of fruits and vegetables: an emerging technology. Annu. Rev. Phytopathol. 1989; 27: 425-441.
13- Kohl J, Postma J, Nicot P, Ruocco M, Blum B. Stepwise screening of microorganisms for commercial use in biological control of plantepathogenic fungi and bacteria. Biol. Control. 2011; 57:1-12.
14- Frave DR. Commercialization and implementation of biocontrol, Annu. Rev. Phytopathol. 2005; 43: 337-359.
15- Celik K, Denli M, Savas T. Reduction of toxic effects of aflatoxin B1 by using baker yeast (Saccharomyces cerevisaie) in growing broiler chick’s diets. Rev. Bras. Zootec. 2003; 32: 615-619.
16- Fernandez A, Verde MT, Gascon M, Ramos JJ, Gomez J. Aflatoxin and its metabolites in tissues from laying hens and broiler chickens fed a contaminated diet. J. Sci. Food Agric. 1994; 65: 407–414
17- Micco C, Miraglia M, Onori R, Brera C, Mantovani A, Ioppolo A, et al. Long-term administration of low doses of mycotoxins to poultry. 1. Residues of aflatoxin B1 and its metabolites in broilers and laying hens. Food Addit. Contam. 1988; 5: 303–308.
18- Diaz G, Murcia HW, Cepeda SM. Cytochrome P450 enzymes involved in the metabolism of aflatoxin B1 in chickens and quail. Poult. Sci. 2010; 89: 2461–2469.
19- Eaton DL, Gallagher EP. Mechanisms of aflatoxin carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 1994; 34: 135–17.
20- Neši´c K, Habschied K, Mastanjevic K. Possibilities for the Biological Control of Mycotoxins in Food and Feed. Toxins. 2021; 13: 198.
21- Varga J, Tóth B. Novel strategies to control mycotoxins in feeds: A review. Acta Vet. Hung. 2005; 53: 189–203.
22- Ji C, Fan Y, Zhao L. Review on biological degradation of mycotoxins. Anim. Nutr. 2016; 2: 127–133.
23- Afshar P, Shokrzadeh M, Raeisi SN, Ghorbani-HasanSaraei A, Nasiraii, LR. Aflatoxins biodetoxification strategies based on probiotic bacteria. Toxicon. 2020; 178: 50–58. [In Persian]
24- Smiley RD, Draughon FA. Preliminary evidence that degradation of aflatoxin B1 by Flavobacterium aurantiacum is enzymatic. J. Food Prot. 2000; 63: 415–418.
25- Bulent K, Alan DW, IS ILV. Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review. Crit. Rev. Food Sci. Nutr. 2006; 46: 593–619.
26- Schatzmayr G, Zehner F, Täubel M, Schatzmayr D, Klimitsch A, Loibner AP, Binder EM. Microbiologicals for deactivating mycotoxins. Mol. Nutr. Food Res. 2006; 50: 543–551.
27- Umesha S, Manukumar HMG, Chandrasekhar B, Shivakumara P, Kumar JS, Raghava S, et al. Aflatoxins and food pathogens: Impact of biologically active aflatoxins and their control strategies. J. Sci. Food Agric. 2017; 97: 1698–1707.
28- Foroud NA, Baines D, Gagkaeva TY, Thakor N, Badea A, Steiner B, et al. Trichothecenes in Cereal Grains—An Update. Toxins. 2019; 11: 634.
29- Sangare L, Zhao Y, Folly Y, Chang J, Li J, Selvaraj J, Liu Y. Aflatoxin B1 degradation by a Pseudomonas strain. Toxins. 2014; 6: 3028–3040.
30- Farzaneh M, Shi ZQ, Ghassempour A, Sedaghat N, Ahmadzadeh M, Mirabolfathy M, et al. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control. 2012; 23: 100–106. [In Persian]
31- He JW, Bondy GS, Zhou T, Caldwell D, Boland GJ, Scott PM. Toxicology of 3-epi-deoxynivalenol, a deoxynivalenol transformation product by Devosia mutans 17–2-E-8. Food Chem. Toxicol. 2015; 84: 250–259.
32- Wang L, Wang Z, Yuan Y, Cai R, Niu C, Yue T. Identification of key factors involved in the biosorption of patulin by inactivated lactic acid bacteria (LAB) cells. Plos One. 2015; 10: 131-143.
33- Wang Y, Zhao C, Zhang D, Zhao M, Zheng D, Peng M, et al. Simultaneous degradation of aflatoxin B1 and zearalenone by a microbial consortium. Toxicon. 2018; 146: 69–76.
34- El-Nezami H, Polychronaki N, Salminen S, Mykkänen H. Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative á-Zearalenol. Appl. Environ. Microbiol. 2002; 68: 3545–3549.
35- Murphy LYW, Paul CT, Kevin JA, Hani EN. Lactobacillus rhamnosus GG modulates intestinal mucosal barrier and inflammation in mice following combined dietary exposure to deoxynivalenol and zearalenone. J. Funct. Foods. 2016; 22: 34–43.
36- Vega MF, Dieguez SN, Riccio B, Aranguren S, Giordano A, Denzoin L, et al. Zearalenone adsorption capacity of lactic acid bacteria isolated from pigs. Braz. J. Microbiol. 2017; 48: 715–723.
37- Long M, Li P, Zhang WK, Li XB, Zhang Y, Wang Z, Liu GW. Removal of zearalenone by strains of lactobacillus sp. isolated from rumen in vitro. J. Anim. Vet. Adv. 2012; 11: 2417–2422.
38- Hsu TC, Yi PJ, Lee TY, Liu JR. Probiotic characteristics and zearalenone removal ability of a Bacillus licheniformis strain. Plos One. 2018; 13: 0194866.
39- Lee A, Cheng KC, Liu JR. Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. Plos One. 2017; 12: 182-220.
40- Wu Q, Jezkova A, Yuan Z, Pavlikova L, Dohnal V, Kuca K. Biological degradation of aflatoxins. Drug Metab. Rev. 2009; 41: 1-7.
41- Zoghi A, Massoud R, Todorov SD, Chikindas ML, Popov I, Smith S, et al. Role of the lactobacilli in food bio-decontamination: Friends with benefits. Enzyme microb technol. 2021; 150: 109861.
42- Gerez CL, Torino MI, Rollán G, de Valdez GF. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control. 2009; 20: 144–148.
43- Abrunhosa L, Paterson RR, Venâncio A. Biodegradation of ochratoxinAfor food and feed decontamination. Toxins. 2010; 2: 1078-1099.
44- Juodeikiene G, Bartkiene E, Cernauskas D, Cizeikiene D, Zadeike D, Lele V, et al. Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT. Food Sci. Technol. 2018; 89: 307–314.
45- Dalié DKD, Deschamps AM, Richard-Forget F. Lactic acid bacteria–Potential for control of mould growth and mycotoxins: A review. Food Control. 2010; 21: 370–380.
46- Niderkorn V, Boudra H, Morgavi DP. Binding of Fusarium mycotoxins by fermentative bacteria in vitro.  J. Appl. Microbiol. 2006; 101: 849–856.
47- Muhialdin BJ, Saari N, Meor Hussin AS. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules. 2020; 25(11): 2511-2655.
48- Pfliegler WP, Pusztahelyi T, Pócsi I. Mycotoxins—Prevention and decontamination by yeasts. J. Basic Microbiol. 2015; 55: 805–818.
49- El-Tarabily KA, Sivasithamparam K. Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience. 2006; 47: 25–35.
50- Farbo MG, Urgeghe PP, Fiori S, Marcello A, Oggiano S, Balmas V, et al. Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. Int. J. Food Microbiol. 2018; 284: 1–10.
51- Druvefors U. Yeast Biocontrol of Grain Spoilage Mold. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden. 2004.
52- Díaz MA, Pereyra MM, Picón-Montenegro E, Meinhardt F, Dib JF. Killer Yeasts for the Biological Control of Postharvest Fungal Crop Diseases. Microorganisms. 2020; 8: 1680.
53- Zohri AA, Abdel-Kareem MM. Four strains of yeasts: As effective biocontrol agents against both growth and mycotoxins formation by selected 11 toxigenic fungi. Glo. Adv. Res. J. Microb. 2018; 7: 132–135. [In Persian]
54- Liu Y, Chang J, Wang P, Yin Q, Huang W, Liu C, et al. Effects of Saccharomyces cerevisiae on alleviating cytotoxicity of porcine jejunal epithelia cells induced by deoxynivalenol. AMB Express. 2019; 9: 137.
55- Mendieta CR, Gómez GV, Del Río JCG, Cuevas AC, Arce JM, Ávila EG. Effect of the Addition of Saccharomyces Cerevisiae Yeast Cell Walls to Diets with Mycotoxins on the Performance and Immune Responses of Broilers. J. Poult. Sci. 2018; 55: 38–46.
56- Yang Q, Wang J, Zhang H, Li C, Zhang X. Ochratoxin A is degraded by Yarrowia lipolytica and generates non-toxic degradation products. World Mycotoxin J. 2016; 9: 269–278.
57- Li X, Tang H, Yang C, Meng X, Liu B. Detoxification of mycotoxin patulin by the yeast Rhodotorula mucilaginosa. Food Control. 2019; 96: 47–52.
58- Vanhoutte I, Audenaert K, De Gelder L. Biodegradation of mycotoxins: Tales from known and unexplored worlds. Front. Microbiol. 2016; 7: 561.
59- Yiannikouris A, François J, Poughon L, Dussap CG, Bertin G, Jeminet G, et al. Alkali extraction of beta-d-glucans from S. cerevisiae cell wall and study of their adsorptive properties toward zearalenone. J. Agric. Food Chem. 2004; 52: 3666–3673.
60- Yiannikouris A, Kettunen H, Apajalahti J, Pennala E, Moran CA. Comparison of the sequestering properties of yeast cell wall extract and hydrated sodium calcium aluminosilicate in three in vitro models accounting for the animal physiological bioavailability of zearalenone. Food Addit Contam Part. A Chem. Anal. Control. Expo. Risk Assess. 2013; 30: 1641–1650.
61- Liu N, Wang J, Liu Z, Wang Y, Wang J. Effect of supplemental yeast cell walls on growth performance, gut mucosal glutathione pathway, proteolytic enzymes and transporters in growing broiler chickens. J. Anim. Sci. 2018; 96: 1330–1337.
62- Cho JI, Kang, GJ. Control of aflatoxin B1 production of Aspergillusparasiticus using antagonistic microorganisms and its application in Meju. Food Sci and Biotechnol. 2000; 9: 151-156.
63- Abbès S, Salah-Abbès JB, Sharafi H, Jebali R, Noghabi KA, Oueslati R. Ability of Lactobacillus rhamnosus GAF01 to remove AFM1 in vitro and to counteract AFM1 immunotoxicity in vivo. J. Immunotoxicol. 2013; 10: 279–286
64- Armando MR, Pizzolitto RP, Dogi CA, Cristofolini A, Merkis C, Poloni V, et al. Adsorption of ochratoxin A and zearalenone by potential probiotic S. cerevisiae strains and its relation with cell wall thickness. J. Appl. Microbiol. 2012; 113: 256–264.
65- Horn BW, Dorner JW. Effect of nontoxigenic Aspergillus flavus and A. parasiticus on aflatoxin contamination of wounded peanut seeds inoculated with agricultural soil containing natural fungal populations. Biocontrol. Sci. Technol. 2009; 19: 249–262.
66- Alberts JF, Lilly M, Rheeder JP, Burger HM, Shephard GS, Gelderblom WCA. Technological and community-based methods to reduce mycotoxin exposure. Food Control. 2017; 73: 101–109.
67- Hackbart HCS, Machado AR, Christ-Ribeiro A, Prietto L, Badiale-Furlong E. Reduction of aflatoxins by Rhizopus oryzae and Trichoderma reesei. Mycotoxin Res. 2014; 30: 141–149.
68- Błaszczyk L, Basin´ ska-Barczak A, C´wiek-Kupczyn´ ska H, Gromadzka K, Popiel D, Ste˛pien Ł. Suppressive Effect of Trichoderma spp. on Toxigenic Fusarium Species. Pol. J. Microbiol. 2017; 66: 85–100.
69- Wagacha J, Muthomi J. Mycotoxin problem in Africa: Current status, implications to food safety and health and possible management strategies. Int. J. Food Microbiol. 2008; 124: 1–12.
70- Vekiru E, Hametner C, Mitterbauer R, Rechthaler J, Adam G, Schatzmayr G, et al. Cleavage of Zearalenone by Trichosporon mycotoxinivorans to a Novel Nonestrogenic Metabolite. Appl. Environ. Microbiol. 2010; 76: 2353–2359.
71- Luo Y, Liu X, Li J. Updating techniques on controlling mycotoxins—A review. Food Control. 2018; 89: 123–132.
72- Luo Y, Liu X, Yuan L, Li J. Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects. Trends Food Sci. Technol. 2019; 96: 127-134.
73- Zhang Z, Li M, Wu C, Peng B. Physical adsorption of patulin by Saccharomyces cerevisiae during fermentation. J. Food Sci. Technol. 2019; 56: 2326–2331.
74- Vekiru E, Frühauf S, Hametner C, Schatzmayr G, Krska R, Moll WD, et al. Isolation and characterisation of enzymatic zearalenone hydrolysis reaction products. World Mycotoxin J. 2016; 9: 353–363.
75- Loi M, Fanelli F, Liuzzi VC, Logrieco AF, Mulè G. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins. 2017; 9: 111.
76- Ferrara M, Haidukowski M, D’Imperio M, Parente A, De Angelis E, Monaci L, et al. New insight into microbial degradation of mycotoxins during anaerobic digestion. Waste Manag. 2020; 119: 215–225.
77- Lyagin I, Efremenko E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action. Molecules. 2019; 24: 2362.
78- Calo JR, Crandall PG, O’Bryan C, Ricke ASC. Essential oils as antimicrobials in food systems, A review. Food Control. 2015; 54: 111–119.
79- Pawar VC, Thaker VS. In vitro efficacy of 75 essential oils against Aspergillus niger. Mycoses. 2007; 49: 316–323.
80- El-Nagerabi SAF, Al-Bahry SN, Elshafie AE, AlHilali S. Effect of Hibiscus sabdariffa extract and Nigella sativa oil on the growth and aflatoxin B1 production of Aspergillus flavus and Aspergillus parasiticus strains. Food Control. 2012; 25: 59–63.
81- Roychoudhury R. Chapter 18—Neem Products. In Ecofriendly Pest Management for Food Security; Omkar, Ed.; Academic Press: Cambridge, MA, USA. 2016; 545–562.
82- Brahmachari G. Neem–An Omnipotent Plant: A Retrospection. Chem Bio Chem. 2004; 5: 408–421.
83- Regulation (EC) No 1332/2008 of the European Parliament and of the Council of 16 December 2008 on Food Enzymes and Amending Council Directive 83/417/EEC, Council Regulation (EC) No 1493/1999, Directive 2000/13/EC, Council Directive 2001/112/EC and Regulation (EC) No 258/97.
84- Mahmood AL. Inhibition of growth and aflatoxin biosynthesis by Aspergillusflavus by extracts of some Egyptian plants. Letters Applied. Microbiol. 1999; 29: 334–336.
85- Juglal S, Govinden R, Odhav B. Spice oils for the control of co-occurring mycotoxin-producing fungi. J. Food Prot. 2002; 65: 683–687.
86- Bagchi GD, Singh AS, Khanuja PS, Bansal RP, Singh SC, Kumar S. Wide spectrum antibacterial and antifungal activities in the seeds of some co- prophilous plants of north Indian plains. J. Ethnopharmacol. 1999; 64: 69–77.
87- Zeringue HJ, Bhatnagar D. Effects of neem leaf volatiles on submerged cultures of aflatoxigenic Aspergillus parasiticus. Appl. Environ. Microbiol. 1994; 60: 3543–3547.
88- Razzaghi-Abyaneh M, Allameh A, Tiraihi T, Shams-Ghahfarokhi M, Ghorbanian M. Morphological alterations in toxigenic Aspergillus parasiticus exposed to neem (Azadirachta indica) leaf and seed aqueous extracts. Mycopathologia. 2005; 159: 565–570. [In Persian]
89- Sitara U, Niaz I, Naseem J. Antifungal effect of essential oils on in vitro growth of pathogenic fungi. Pak. J. Bot. 2008; 40: 409–414.
90- Zaika LL, Buchanan RL. Review of compounds affecting the biosynthesis or bioregulation of aflatoxins. J. Food Prot. 1987; 50: 691–708.
91- Hussain A, Shafqatullah JA, Ziaur R. Inhibition of aflatoxin producing fungus growth using chemical, herbel compounds/spices and plants. Pure Appl. Bio. 2012; 1(1): 8-13.
92- Morsi NM. Antimicrobial effect of crude extracts of Nigella sativa on multiple antibiotics-resistant bacteria. Acta Microbiol Policy. 2000; 49: 63 - 74
93- El-Maraghy SSM. Effect of some spices as preservatives for storage of Lentil (Lens esculenta L.) Seeds. Folia Microbiol. 1995; 40: 490–492.
94- Solimar KM, Badeaa RI. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol. 2002; 40: 1669-1675.
95- Prescott LM, Harley JP, Klein DA. Microbiology. McGraw-Hill, USA. 2005.
96- Shokri H, Sharifzadeh A. Zataria multiflora Boiss. A review study on chemical composition, anti-fungal and anti-mycotoxin activities, and ultrastructural changes. J. Herbmed Pharmacol. 2017; 6(1): 1-9. [In Persian]
97- Hu Y, Zhang J, Kong W, Zhao G, Yang M. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem. 2017; 220: 1–8.