تالاب میقان استان مرکزی، مرکز ورود ویروس آنفلوآنزای فوق حاد پرندگانH5، ایران، 1395

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ویروس‌شناسی، گروه پاتوبیولوژی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد، گروه پاتوبیولوژی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 استادیار، بخش بیماری‌های طیور، مؤسسه تحقیقات واکسن و سرم‌سازی رازی، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

4 استاد، گروه میکروبیولوژی و ایمنولوژی، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران

چکیده

طی دو دهه گذشته، ویروس آنفلوآنزای فوق حاد طیور سویه‌ H5 به دلیل ماهیت زئونوتیک بودن و ایجاد جهش فراوان مورد توجه بسیاری قرار گرفته است. هدف از مطالعه پیش رو بررسی خصوصیات فیلوژنتیک و مولکولی ژن هماگلوتینین (HA) سویه H5N8 وارد شده به ایران در سال 1395 در تالاب میقان شهرستان اراک استان مرکزی بود. بدین منظور نمونه‌های مربوطه به تخم‌مرغ‌های 14 -10 روزه تلقیح شده و پس از استخراج مایع آلانتوئیک و استخراج RNA و انجام PCR و تعیین توالی ژن‌ها، درخت‌های فیلوژنتیک توسط برنامه Mega7 رسم شده و خصوصیات مولکول شامل محل شکست Site) (Cleavage محل اتصال به گیرنده (Receptor binding Site)، محل گلیکوزیله (Glycosylation Site)، محل آنتی‌ژنیک (Antigenic Site) و جهش‌های مرتبط با ژن HA بررسی گردید. بر اساس آنالیز توالی اسید آمینه ژن HA، شامل محل شکست موتیف اسید آمینه پلی‌بازیک PLREKRRKR/GLF، که مشخصه ویروس‌های آنفلوآنزای فوق حاد بوده و جهش‌های T156A، S123P، S133A مرتبط با افزایش اتصال به اسید سیالیک پستانداران بود تجزیه و تحلیل فیلوژنیک ژن HA، بیانگر طبقه‌بندی این ویروس در کلد (Clade) b2.3.4.4 بوده و به نظر می‌رسد که ورود این سویه به ایران احتمالاً از طریق مسیر پروازی پرندگان وحشی مهاجر، از غرب آسیا به شرق آفریقا افتاده است.

کلیدواژه‌ها


عنوان مقاله [English]

Meighan Wetland of Markazi Province,Entrance Center of Avian Influenza Highly pathogenic virus H5 ,Iran ,2016

نویسندگان [English]

  • Minoo Motahhar 1
  • Hadi Keyvanfar 2
  • Abdolhamid Shoushtari 3
  • Mohammad Hossein Fallah Mehrabadi 3
  • Gholamreza Nikbakht Brujeni 4
1 PhD Student in Virology, Department of Pathobiology, Science and Research Branch, Islamic Azad University, Teh-ran, Iran
2 Professor, Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Assistant Professor, Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research In-stitute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
4 Professor, Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Teh-ran, Iran
چکیده [English]

During the past two decades, the highly pathogenic avian influenza H5N1 virus has received considerable attention due to its zoonotic and mutative features. Purpose of the leading study is molecular and phylogenetic characteristics of hemagglutinin (HA) gene of H5N8 strain identified in Meighan wetland of Arak city, Markazi province were investigated. For this purpose, samples were inoculated with embryonic eggs of 14-10 days and after extraction of allantoic fluid and RNA extraction and PCR and sequencing of genes, phylogenetic trees were drawn by Mega7 program and molecular properties including Cleavage site, Glycosylation site, Antigenic site, Receptor Binding site and HA gene-related mutations were investigated. Based on the analysis of the amino acid sequence of the HA genes, the cleavage site of the gene includes the PLREKRRKR / GLF polybasic amino acid motif, which is a characteristic of highly pathogenic influenza viruses. The HA gene of two viruses had T156A, S123P, S133A mutations associated with the increased mammalian sialic acid binding. Phylogenetic analysis of the HA gene of the virus studied in this study indicated the classification of this virus in the 2.3.4.4 b Clade. It seems that the introduction of these H5N8 HPAI strains in Iran probably occurred through the West Asia-East African flyway by wild migratory aquatic birds.

کلیدواژه‌ها [English]

  • Avian influenza
  • Highly pathogenic
  • Iran
  1. Xu X, Subbarao K, Cox NJ, Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology. 1999;261(1):15-9.
  2. Cattoli G, Fusaro A, Monne I, Capua I. H5N1 virus evolution in Europe—an updated overview. Viruses. 2009;1(3):1351-63.
  3. Zhao K, Gu M, Zhong L, Duan Z, Zhang Y, Zhu Y, et al. Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China. Veterinary microbiology. 2013;163(3-4):351-7.
  4. Li J, Gu M, Liu D, Liu B, Jiang K, Zhong L, et al. Phylogenetic and biological characterization of three K1203 (H5N8)-like avian influenza A virus reassortants in China in 2014. Archives of virology. 2016;161(2):289-302.
  5. Wu H, Peng X, Xu L, Jin C, Cheng L, Lu X, et al. Novel reassortant influenza A (H5N8) viruses in domestic ducks, eastern China. Emerging infectious diseases. 2014;20(8):1315.
  6. Lee EK, Lee YN, Song BM, Heo GB, Lee HS, Lee YJ. Pathogenesis of Multiple Subgroups of Clade 2.3. 4.4. Influenza A (H5N8) Virus in Mice and Ferrets. 대한수의학회 학술대회발표집. 2016:274-5.
  7. Vascellari M, Hablolvarid M, Shoushtari A, Hedayati A. Mortality of wild swans associated with naturally infection with highly pathogenic H5N1 avian influenza virus in Iran. Archives of Razi Institute. 2007;62(4):207-13.
  8. Kord E, Kaffashi A, Ghadakchi H, Eshratabadi F, Bameri Z, Shoushtari A. Molecular characterization of the surface glycoprotein genes of highly pathogenic H5N1 avian influenza viruses detected in Iran in 2011. Tropical animal health and production. 2014;46(3):549-54.
  9. Yegani S, Shoushtari A-H, Eshratabadi F, Molouki A. Full sequence analysis of hemagglutinin and neuraminidase genes and proteins of highly pathogenic avian influenza H5N1 virus detected in Iran, 2015. Tropical animal health and production. 2019;51(3):605-12.
  10. OIE. World Organisation for Animal Health, 2018. OIE Situation Report for Avian Influenza. Available At: http://www.oie.int/animal-healthin- the-world/update-on-avian-influenza/ 2018 [
  11. Qi X, Li X, Rider P, Fan W, Gu H, Xu L, et al. Molecular characterization of highly pathogenic H5N1 avian influenza A viruses isolated from raccoon dogs in China. PloS one. 2009;4(3):e4682.
  12. Hoffimann E, Stech J, Guan Y, Webster R, Perez D. Universal primer set for the full-length amplification of all influenza A viryses. Arch Virol. 2001;146(2275):89.
  13. Stear MJ. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees) 5th Edn. Volumes 1 & 2. World Organization for Animal Health 2004. ISBN 92 9044 622 6.€ 140. Parasitology. 2005;130(6):727-.
  14. Gupta R, Brunak S, editors. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput; 2001.
  15. de Graaf M, Fouchier RA. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. The EMBO journal. 2014;33(8):823-41.
  16. Ohkawara A, Okamatsu M, Ozawa M, Chu DH, Nguyen LT, Hiono T, et al. Antigenic diversity of H5 highly pathogenic avian influenza viruses of clade 2.3. 4.4 isolated in Asia. Microbiology and immunology. 2017;61(5):149-58.
  17. Kaverin NV, Rudneva IA, Govorkova EA, Timofeeva TA, Shilov AA, Kochergin-Nikitsky KS, et al. Epitope mapping of the hemagglutinin molecule of a highly pathogenic H5N1 influenza virus by using monoclonal antibodies. Journal of virology. 2007;81(23):12911-7.
  18. Kaverin NV, Rudneva IA, Ilyushina NA, Varich NL, Lipatov AS, Smirnov YA, et al. Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. Journal of General Virology. 2002;83(10):2497-505.
  19. Ha Y, Stevens DJ, Skehel JJ, Wiley DC. H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. Embo j. 2002;21(5):865-75.
  20. Reynolds CR, Islam SA, Sternberg MJ. EzMol: a web server wizard for the rapid visualization and image production of protein and nucleic acid structures. Journal of molecular biology. 2018;430(15):2244-8.
  21. Sonnberg S, Webby RJ, Webster RG. Natural history of highly pathogenic avian influenza H5N1. Virus research. 2013;178(1):63-77.
  22. WHO/OIE/FAO. Continuedevolution of highly pathogenic avian influenza A (H5N1):Updated nomenclature. Influenza and Other Respiratory Viruses 6,1–5. doi:10.1111/j.1750-2659.2011.00298.x Available from http://onlinelibrary.wiley.com/doi/10.1111/j.1750-2659.2011.00298.x/abstract H5N1 Evolution Working Group (2012) .

 

  1. Smith GJ, Donis RO. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013-2014. Influenza Other Respir Viruses. 2015;9(5):271-6.
  2. Lee D-H, Torchetti MK, Winker K, Ip HS, Song C-S, Swayne DE. Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds. Journal of virology. 2015;89(12):6521-4.
  3. FAO. Food and Agriculture Organization (FAO) of the United Nations 2016. H5N8 highly pathogenic avian influenza (HPAI) of clade 2.3.4.4 detected through surveillance of wild migratory birds in the Tyva Republic, the Russian Federation – potential for international spread2016. Rome: FAO. Available from: http://www.fao.org/3/a-i6113e. pdf. Accessed 11 Nov 2016 2016 .
  4. Shil P, Chavan SS, Cherian SS. Antigenic variability in Neuraminidase protein of Influenza A/H3N2 vaccine strains (1968–2009). Bioinformation. 2011;7(2):76.
  5. Abed Y, Hardy I, Li Y, Boivin G. Divergent evolution of hemagglutinin and neuraminidase genes in recent influenza A: H3N2 viruses isolated in Canada. Journal of medical virology. 2002;67(4):589-95.
  6. Sandbulte MR, Westgeest KB, Gao J, Xu X, Klimov AI, Russell CA, et al. Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proceedings of the National Academy of Sciences. 2011;108(51):20748-53.
  7. Westgeest KB, Russell CA, Lin X, Spronken MI, Bestebroer TM, Bahl J, et al. Genomewide analysis of reassortment and evolution of human influenza A (H3N2) viruses circulating between 1968 and 2011. Journal of virology. 2014;88(5):2844-57.
  8. Matrosovich M, Zhou N, Kawaoka Y, Webster R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. Journal of virology. 1999;73(2):1146-55.
  9. Li K, Guan Y, Wang J, Smith G, Xu K, Duan L, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature. 2004;430(6996):209-13.
  10. Su Y, Yang H-Y, Zhang B-J, Jia H-L, Tien P. Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells. Archives of virology. 2008;153(12):2253-61.
  11. Burke DF, Smith DJ. A recommended numbering scheme for influenza A HA subtypes. PloS one. 2014;9(11):e112302.
  12. Gohrbandt S, Veits J, Hundt J, Bogs J, Breithaupt A, Teifke JP, et al. Amino acids adjacent to the haemagglutinin cleavage site are relevant for virulence of avian influenza viruses of subtype H5. Journal of General Virology. 2011;92(1):51-9.
  13. Ibrahim E, Sirawan A, El-Bazzal B, El Hage J, Abi Said M, Zaraket H, et al. Complete genome sequence of the first H5N1 avian influenza virus isolated from chickens in Lebanon in 2016. Genome announcements. 2016;4(5):e01062-16.
  14. Linster M, van Boheemen S, de Graaf M, Schrauwen EJ, Lexmond P, Mänz B, et al. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell. 2014;157(2):329-39.
  15. Lee C-W, Suarez DL, Tumpey TM, Sung H-W, Kwon Y-K, Lee Y-J, et al. Characterization of highly pathogenic H5N1 avian influenza A viruses isolated from South Korea. Journal of virology. 2005;79(6):3692-702.
  16. Yang H, Carney PJ, Mishin VP, Guo Z, Chang JC, Wentworth DE, et al. Molecular characterizations of surface proteins hemagglutinin and neuraminidase from recent H5Nx avian influenza viruses. Journal of virology. 2016;90(12):5770-84.
  17. Nguyen HT, Nguyen T, Mishin VP, Sleeman K, Balish A, Jones J, et al. Antiviral susceptibility of highly pathogenic avian influenza A (H5N1) viruses isolated from poultry, Vietnam, 2009–2011. Emerging infectious diseases. 2013;19(12):1963.
  18. Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and immune interactions. Trends in microbiology. 2007;15(5):211-8.
  19. Wagner R, Wolff T, Herwig A, Pleschka S, Klenk H-D. Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. Journal of virology. 2000;74(14):6316-23.
  20. Zhou H, Yu Z, Hu Y, Tu J, Zou W, Peng Y, et al. The special neuraminidase stalk-motif responsible for increased virulence and pathogenesis of H5N1 influenza A virus. PloS one. 2009;4(7):e6277.