واکسن‌های DNA استراتژی قدرتمندی برای کنترل بروسلوز

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، گروه میکروبیولوژی، دانشکده علوم زیستی، واحد فلاورجان، دانشگاه آزاد اسلامی، فلاورجان، ایران

2 دانشجوی کارشناسی ارشد میکروبیولوژی، گروه میکروبیولوژی، دانشکده علوم زیستی، واحد فلاورجان، دانشگاه آزاد اسلامی، فلاورجان، ایران

3 دانش‌آموخته کارشناسی ارشد میکروبیولوژی، گروه میکروبیولوژی، دانشکده علوم زیستی، واحد فلاورجان، دانشگاه آزاد اسلامی، فلاورجان، ایران

چکیده

بروسلوز یک بیماری مشترک بین انسان و دام با توزیع جهانی و با روند صعودی می‌باشد. کنترل بروسلوز در انسان به کنترل بیماری حیوانی بستگی دارد. با وجود این که تاکنون واکسن تأیید شده‌ای برای بروسلوز در انسان وجود ندارد، تلاش‌های زیادی برای ساخت واکسن‌هایی با کارایی بالا و عوارض جانبی پائین برای حیوانات صورت گرفته است. واکسن‌های زنده ضعیف شده ارزان‌تر و مؤثرتر از سایر واکسن‌ها هستند اما می‌توانند موجب افزایش مقاومت آنتی‌بیوتیکی، تداخل با آزمایش‌های تشخیصی سرولوژیکی و افزایش حدت در حیوان شوند. واکسیناسیون حیوانات با واکسن‌های موجود در بازار ممکن است باعث بیماری شود و در برخی شرایط اثربخشی پایینی دارند. واکسن‌های حاوی پروتئین نوترکیب یا DNA کدکننده آنها می‌توانند جایگزین مناسبی برای واکسن‌های مرسوم باشند، زیرا می‌توانند موجب کاهش عوارض ناخواسته شوند. انتخاب آنتی‌ژن مناسب که سیستم ایمنی را به خوبی تحریک کند در تهیه این واکسن‌ها اهمیت زیادی دارد. در این مطالعه مروری با بررسی واکسن‌های نوترکیبی که بر مبنای پروتئین‌های نوترکیب و DNA ساخته شده‌اند، تلاش شده است تا نقاط قوت و ضعف آنها و چشم‌انداز جدید واکسیناسیون بر علیه بیماری بروسلوز روشن‌تر شود. مطالعه حاضر با جستجو در پایگاه‌های اطلاعاتی Google scholar، PubMed و SID تا سال 2021 میلادی به تحقیقات جدید در مورد پروتئین نوترکیب و واکسن‌های DNA علیه بروسلوز پرداخته است. با توجه مزیت‌ها و معایب واکسن‌های معمول و جدید بروسلوز، واکسن‌های نوترکیب و DNA، پس از گذراندن مراحل تحقیقات در حیوانات بزرگ، می‌توانند راهکار مناسبی برای جلوگیری از پیشرفت بروسلوز باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

DNA vaccines: a powerful strategy for brucellosis control

نویسندگان [English]

  • Saeid Abedi 1
  • Ghazal Pourmohammad Hosseini 2
  • Golnoosh Rezaeizadeh 3
1 Assistant Professor, Department of Microbiology, Faculty of Biology Science, Falavarjan Branch, Islamic Azad University, Falavarjan, Iran
2 Masters student, Department of Microbiology, Faculty of Biology Science, Falavarjan Branch, Islamic Azad Uni-versity, Falavarjan, Iran
3 Masters, Department of Microbiology, Faculty of Biology Science, Falavarjan Branch, Islamic Azad University, Falavarjan, Iran
چکیده [English]

Brucellosis is a common disease between humans and animals with global distribution and an increasing trend. The control of brucellosis in humans depends on the control of the animal disease. Although there is no approved vaccine for brucellosis in humans, many efforts have been made to develop vaccines with high efficiency and low side effects for animals. Live attenuated vaccines are cheaper and more effective than other vaccines, but they can increase antibiotic resistance, interfere with serological diagnostic tests, and increase virulence in animals. Vaccination of animals with commercially available vaccines may cause disease and, in some cases, have low efficacy.  Vaccines containing recombinant protein or their coding DNA can be suitable alternatives to the conventional vaccines, because they can reduce unwanted side effects. Choosing the suitable antigen that stimulates the immune system is very important in the preparation of these vaccines. In the present study, by observing the new recombinant vaccines that are made based on recombinant proteins and DNA, it has been tried to clarify their strengths and weaknesses and the new perspective of vaccination against brucellosis. There is currently no approved vaccine for brucellosis in humans. In addition, the control of brucellosis in humans depends on the control of the animal disease. This review article searches Google scholar, PubMed, and SID databases for new research on recombinant protein and DNA vaccines against brucellosis until 2021. Considering the advantages and disadvantages of common and new brucellosis vaccines, recombinant and DNA vaccines, after conducting the research stages in large animals, can be a suitable approach to prevent the progress of brucellosis.

کلیدواژه‌ها [English]

  • Brucellosis
  • vaccine
  • recombinant protein
  • DNA vaccines
1- Madkour MM. Brucellosis. Elsevier; 2014.
2- Vishnu US, Sankarasubramanian J, Gunasekaran P, Rajendhran J. Identification of potential antigens from non-classically secreted proteins and designing novel multitope peptide vaccine candidate against Brucella melitensis through reverse vaccinology and immunoinformatics approach. Infection, Genetics and Evolution. 2017; 55: 151-8.
3- Zhu L, Feng Y, Zhang G, Jiang H, Zhang Z, Wang N, et al. Brucella suis strain 2 vaccine is safe and protective against heterologous Brucella spp. infections. Vaccine. 2016; 34(3): 395-400.
4- Shirzadi MR, Mohammadi P, Moradi G, Goodarzi E, Khazaei S, Moayed L, et al. The Incidence and Geographical Distribution of Brucellosis in Iran Using Geographic Information System and Prediction of its Incidence in 2021. Journal of preventive medicine and hygiene. 2021;62(3): E635.
5- Djangwani J, Ooko Abong’ G, Gicuku Njue L, Kaindi DW. Brucellosis: Prevalence with reference to East African community countries–A rapid review. Veterinary Medicine and Science. 2021;7(3): 851-67.
6- Dadar M, Tiwari R, Sharun K, Dhama K. Importance of brucellosis control programs of livestock on the improvement of one health. Veterinary Quarterly. 2021; 41(1): 137-51.
7- Moreno E, Barquero-Calvo E. The role of neutrophils in brucellosis. Microbiology and Molecular Biology Reviews. 2020; 84(4): e00048-20.
8- Li ZQ, Shi JX, Fu WD, Zhang Y, Zhang J, Wang Z, et al. A Brucella melitensis M5-90 wboA deletion strain is attenuated and enhances vaccine efficacy. Molecular Immunology. 2015;66(2): 276-83.
9- Pei J, Turse JE, Ficht TA. Evidence of Brucella abortus OPS dictating uptake and restricting NF-κB activation in murine macrophages. Microbes and infection. 2018; 10(6): 582-90.
10- Barrionuevo P, Cassataro J, Delpino MV, Zwerdling A, Pasquevich KA, Samartino CG, et al. Brucella abortus inhibits major histocompatibility complex class II expression and antigen processing through interleukin-6 secretion via Toll-like receptor 2. Infection and immunity. 2018; 76(1): 250-62.
11- Gheibi A, Khanahmad H, Kashfi K, Sarmadi M, Khorramizadeh MR. Development of new generation of vaccines for Brucella abortus. Heliyon. 2018; 4(12): e01079.
12- Mansoori N, Pourmand MR. Vaccines and vaccine candidates against brucellosis. Infection Epidemiology and Microbiology. 2016; 2(4): 32-6.
13- Mohammed FA, Salman AM. Risk Assessment of Brucellosis in Dairy Cows in Bahri North Locality, Sudan.
14- Truong QL, Cho Y, Park S, Park BK, Hahn TW. Brucella abortus mutants lacking ATP-binding cassette transporter proteins are highly attenuated in virulence and confer protective immunity against virulent B. abortus challenge in BALB/c mice. Microbial pathogenesis. 2016; 95: 175-85.
15- Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends in immunology. 2019; 30(1): 23-32.
16- Zhao Z, Li M, Luo D, Xing L, Wu S, Duan Y, et al. Protection of mice from Brucella infection by immunization with attenuated Salmonella enterica serovar typhimurium expressing A L7/L12 and BLS fusion antigen of Brucella. Vaccine. 2009; 27(38): 5214-9.
17- Bugybayeva D, Kydyrbayev Z, Zinina N, Assanzhanova N, Yespembetov B, Kozhamkulov Y, et al. A new candidate vaccine for human brucellosis based on influenza viral vectors: development of immunization schedule in guinea pig model. 2021; 25(10): 112-55.
18- Tabynov K. Influenza viral vector based Brucella abortus vaccine: a novel vaccine candidate for veterinary practice. Expert Review of Vaccines. 2016; 15(10): 1237-9.
19- Li ZQ, Zhang JL, Xi L, Yang GL, Wang SL, Zhang XG, et al. Deletion of the transcriptional regulator GntR down regulated the expression of genes related to virulence and conferred protection against wild-type Brucella challenge in BALB/c mice. Molecular Immunology. 2017; 92: 99-105.
20- Hop HT, Reyes AW, Simborio HL, Arayan LT, Min WG, Lee HJ, et al. Immunization of mice with recombinant Brucella abortus organic hydroperoxide resistance (Ohr) protein protects against a virulent Brucella abortus 544 Infection. Journal of Microbiology and Biotechnology. 2016; 26(1): 190-6.
21- Hewawaduge C, Senevirathne A, Lee JH. Enhancement of host infectivity, immunity, and protective efficacy by addition of sodium bicarbonate antacid to oral vaccine formulation of live attenuated Salmonella secreting Brucella antigens. Microbial pathogenesis. 2020; 138: 103-857.
22- Ghasemi A, Jeddi-Tehrani M, Mautner J, Salari MH, Zarnani AH. Immunization of mice with a novel recombinant molecular chaperon confers protection against Brucella melitensis infection. Vaccine. 2014; 32(49): 6659-66.
23- Zhou Y, Zheng Y, Chen Y, Li Y, Sun X, Huo Y, et al. Evaluation of a recombinant bacillus calmette-guérin vaccine expressing P39-L7/L12 of Brucella melitensis: An immunization strategy against brucellosis in BALB/c mice. Materials Express. 2020; 10(3): 350-62.
24- Tadepalli G, Konduru B, Murali HS, Batra HV. Intraperitoneal administration of a novel chimeric immunogen (rOP) elicits IFN-γ and IL-12p70 protective immune response in BALB/c mice against virulent Brucella. Immunology Letters. 2017; 192: 79-87.
25- Zhang F, Li Z, Jia B, Zhu Y, Pang P, Zhang C, et al. The immunogenicity of OMP31 peptides and its protection against Brucella melitensis infection in mice. Scientific Reports. 2019;9(1): 1-7.
26- Abdollahi A, Mansouri S, Amani J, Fasihi-Ramandi M, Ranjbar R, Ghasemi A, et al. A Recombinant Chimera Protein as a Novel Brucella Subunit Vaccine: Protective Efficacy and Induced Immune Response in BALB/c Mice. Jundishapur Journal of Microbiology. 2018;11(1).
27- Al-Mariri A, Abbady AQ. Evaluation of the immunogenicity and the protective efficacy in mice of a DNA vaccine encoding SP41 from Brucella melitensis. The Journal of Infection in Developing Countries. 2013; 7(04): 329-37.
28- Majidi B, Najafi MF, Saeedian S. Cloning, expression and purification of Brucella lumazine synthase protein in E. coli BL21. Journal of Advanced Pharmacy Education & Research. 2019; 9(S2).
29- Zimmermann P, Curtis N. Factors that influence the immune response to vaccination. Clinical microbiology reviews. 2019; 32(2): e00084-18.
30- Hu XD, Yu DH, Chen ST, Li SX, Cai H. A combined DNA vaccine provides protective immunity against Mycobacterium bovis and Brucella abortus in cattle. DNA and Cell Biology. 2009; 28(4): 191-9.
31- Chen B, Liu B, Zhao Z, Wang G. Evaluation of a DNA vaccine encoding Brucella BvrR in BALB/c mice. Molecular Medicine Reports. 2019; 19(2): 1302-8.
32- Escalona E, Sáez D, Oñate A. Immunogenicity of a multi-epitope dna vaccine encoding epitopes from Cu–Zn superoxide dismutase and open reading Frames of Brucella abortus in mice. Frontiers in immunology. 2017; 8: 125.
33- Shojaei M, Tahmoorespur M, Soltani M, Sekhavati MH. Immunogenicity evaluation of plasmids encoding Brucella melitensis Omp25 and Omp31 antigens in BALB/c mice. Iranian Journal of Basic Medical Sciences. 2018; 21(9): 957.
34- Imtiaz W, Khan A, Gul ST, Saqib M, Saleemi MK, Shahzad A, et al. Evaluation of DNA vaccine encoding BCSP31 surface protein of Brucella abortus for protective immunity. Microbial pathogenesis. 2018; 125: 514-20.
35- Jain S, Afley P, Dohre SK, Saxena N, Kumar S. Evaluation of immunogenicity and protective efficacy of a plasmid DNA vaccine encoding ribosomal protein L9 of Brucella abortus in BALB/c mice. Vaccine. 2014; 32(35): 4537-42.
36- Da Sol Choi SI, Shin WG, Park CH. Risk for colorectal neoplasia in patients with Helicobacter pylori infection: A systematic review and meta-analysis. Clinical and Translational Gastroenterology. 2020; 11(2): 1401-553.
37- Kwon AJ, Moon JY, Kim WK, Kim S, Hur J. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models. Journal of Veterinary Medical Science. 2016: 16-0036.
38- Du ZQ, Wang JY. A novel lumazine synthase molecule from Brucella significantly promotes the immune-stimulation effects of antigenic protein. Genet Mol Res. 2015; 14(4): 13084-95.
39- Doosti A, Ghasemi-Dehkordi P, Kargar M, Sharifi A. Generation of divalent DNA vaccine based on p39 and shiga-like toxin 2 (stx2) genes. Genetika. 2015; 47(2): 499-507.
40- Ke Y, Wang Y, Li W, Chen Z. Type IV secretion system of Brucella spp. and its effectors. Frontiers in cellular and infection microbiology. 2015; 5: 72.
41- Yousefi S, Tahmoorespur M, Sekhavati MH. Cloning, expression and molecular analysis of Iranian Brucella melitensis Omp25 gene for designing a subunit vaccine. Research in pharmaceutical sciences. 2016; 11(5): 412.
42- Gupta VK, Rout PK, Vihan VS. Induction of immune response in mice with a DNA vaccine encoding outer membrane protein (omp31) of Brucella melitensis 16M. Research in veterinary science. 2017; 82(3): 305-13.
43- Deng Y, Liu X, Duan K, Peng Q. Research progress on brucellosis. Current Medicinal Chemistry. 2019; 26(30): 5598-608.
44- Senevirathne A, Hewawaduge C, Lee JH. Live vaccine consisting of attenuated Salmonella secreting and delivering Brucella ribosomal protein L7/L12 induces humoral and cellular immune responses and protects mice against virulent Brucella abortus 544 challenge. Veterinary research. 2020; 51(1): 1-0.
45- Harzandi N, Aghababa H, Khoramabadi N, Tabaraie T. Efficient Immunization of BALB/c Mice against Pathogenic Brucella melitensis and B. ovis: Comparing Cell-Mediated and Protective Immune Responses Elicited by pCDNA3. 1 and pVAX1 DNA Vaccines Coding for Omp31 of Brucella melitensis. Iranian Journal of Biotechnology. 2021; 19(1): e2618.
46- Atabey T, Acar T, Derman S, Ordu E, Erdemir A, Taşlı PN, et al. In Vitro Evaluation of Immunogenicity of Recombinant OMP25 Protein Obtained from Endemic Brucella abortus Biovar 3 as Vaccine Candidate Molecule Against Animal Brucellosis. Protein and Peptide Letters. 2021;28(10): 1138-47.